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Abstract 
 

EFFECTS OF RESISTANCE EXERCISE TIMING ON SLEEP ARCHITECTURE  
 

Jessica Renee Alley  
B.S., Longwood University 

M.S., Appalachian State University 
 
 

Chairperson:  Dr. Scott R. Collier 
 
 

 Short sleep duration and poor quality of sleep have been associated with health risks 

including cardiovascular disease, diabetes, and obesity.  Prior research has suggested that 

regular aerobic exercise improves quality of sleep; however, less is known regarding 

resistance exercise (RE) and how RE may affect sleep architecture.  The purpose of this 

study was to investigate the acute effects of timing of RE on sleep architecture.  College-aged 

subjects engaged in 5 laboratory visits.  Visits 1 (C) and 2 provided a non-RE control day and 

established the 10-repetition maximum (10RM) on each of nine RE machines, 

respectively.  During visits 3-5, subjects reported at 7 a.m. (7A), 1 p.m. (1P), and 7 p.m. (7P) 

in a randomized order to perform 30 minutes of RE.  An ambulatory sleep-monitoring 

headband was worn during sleep following C, 7A, 1P, and 7P.  Time to fall asleep was 

significantly different between RE conditions 7A and 1P (P = 0.03) and 7A and 7P (P = 

0.02).  All exercise conditions exhibited significantly fewer times woken than the non-RE 

control day (P = 0.04), with 7P resulting in significantly less time awake after initially falling 

asleep (WASO) as compared to C (P = 0.01).  While timing of RE does not appear to impact 



 v 

sleep stages, these data indicate that engaging in RE at any time of day may improve quality 

of sleep as compared to no RE.  Resistance exercise may offer additional benefits regarding 

the ability to fall asleep and stay asleep to populations with osteoporosis, sarcopenia, anxiety, 

or depression. 
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ABSTRACT 

Short sleep duration and poor quality of sleep have been associated with health risks 

including cardiovascular disease, diabetes, and obesity.  Prior research has suggested that 

regular aerobic exercise improves quality of sleep; however, less is known regarding 

resistance exercise (RE) and how RE may affect sleep architecture.  The purpose of this 

study was to investigate the acute effects of timing of RE on sleep architecture.  College-aged 

subjects engaged in 5 laboratory visits.  Visits 1 (C) and 2 provided a non-RE control day and 

established the 10-repetition maximum (10RM) on each of nine RE machines, 

respectively.  During visits 3-5, subjects reported at 7 a.m. (7A), 1 p.m. (1P), and 7 p.m. (7P) 

in a randomized order to perform 30 minutes of RE.  An ambulatory sleep-monitoring 

headband was worn during sleep following C, 7A, 1P, and 7P.  Time to fall asleep was 

significantly different between RE conditions 7A and 1P (P = 0.03) and 7A and 7P (P = 

0.02).  All exercise conditions exhibited significantly fewer times woken than the non-RE 

control day (P = 0.04), with 7P resulting in significantly less time awake after initially falling 

asleep (WASO) as compared to C (P = 0.01).  While timing of RE does not appear to impact 

sleep stages, these data indicate that engaging in RE at any time of day may improve quality 

of sleep as compared to no RE.  Resistance exercise may offer additional benefits regarding 

the ability to fall asleep and stay asleep to populations with osteoporosis, sarcopenia, anxiety, 

or depression.   

 

Key Words:  Sleep quality, resistance training, exercise timing  
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INTRODUCTION 

 Short sleep duration is associated with an increased prevalence of adverse 

cardiovascular events including stroke, myocardial infarction, and congestive heart failure (1) 

as well as conditions of impaired glucose tolerance (18, 40), increased cortisol levels (40), 

elevated blood pressure (22, 28, 43), and an increase in systemic inflammation (19, 28, 48), 

all of which may have long term negative effects on health and contribute to the development 

of diseases such as diabetes, obesity, and hypertension.  Depression and anxiety have also 

been linked to insufficient sleep (5, 26, 27, 31, 42).  Prior research has suggested that six to 

eight hours of sleep per night is optimal for health (1, 4, 14) and that individuals who 

consistently experience shorter sleep duration have a higher risk of all-cause mortality (4, 

13). 

While amount of sleep is critical for health, quality of sleep is also important.  Sleep 

phases are typically differentiated by patterns of brain wave activity as measured on an 

electroencephalogram (EEG) and can be divided into rapid eye movement (REM) and non-

rapid eye movement (NREM) sleep.  Non-rapid eye movement sleep is comprised of three 

stages:  N1, N2, and N3 (formerly divided into stages 3 and 4) (36).  Light sleep includes N1 

and N2 and occurs between wakefulness and deep sleep, or N3.  A typical night of sleep for a 

young adult usually consists of 10-25% of total sleep as deep sleep, which is also commonly 

referred to as slow wave sleep, and 18-25% of total sleep as REM sleep (7).  During a normal 

night of sleep, the body cycles through approximately five 90-minute successions of REM 

and NREM sleep with the amount of deep sleep decreasing in each subsequent cycle (50).  

Conversely, REM sleep stages increase in duration and intensity as the end of the sleeping 

period approaches (36).  In addition to EEG activity that resembles that which occurs during 
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wakefulness, REM sleep is characterized by atonia and movement of the eyes, and most 

memorable dreaming occurs during this stage.  Both REM and deep sleep appear essential to 

memory (36), and research suggests that deep sleep plays a major role in physiological 

restoration, especially in relation to cardiovascular and endocrine function (7, 12).  

Specifically, secretion of human growth hormone is highest during deep sleep (47), and the 

parasympathetic branch of the autonomic nervous system dominates during this sleep stage, 

which may contribute to the relationship between deep sleep disruption and glucose 

intolerance (3, 7, 41, 44).  Investigations that demonstrate alterations in sleep architecture 

concurrent with diseases such as obesity, diabetes, and hypertension support the importance 

of normal sleep architecture for health (12, 21, 35). 

 It is generally accepted that engaging in regular aerobic exercise can decrease the risk 

of cardiovascular disease (CVD) as well as improve quality of sleep (9, 49).  Mind-body 

practices such as yoga, Tai Chi, and traditional Chinese exercise have also been shown to 

have beneficial effects on sleep (6, 23); however, the additional benefits of performing 

resistance exercise (RE) may render this mode a higher priority for certain populations, such 

as individuals with sarcopenia or osteoporosis.  Resistance exercise may be used to attenuate 

the advance of sarcopenia by increasing muscle mass and strength in older adults, thus 

improving functional capabilities and delaying disability associated with the disease (29).  

Because of its potential to positively modify bone mineral density, resistance training has 

also been included in recent exercise recommendations for osteoporotic populations (16).  In 

addition, orthopedic limitations may prevent aerobic exercise participation and make RE a 

more realistic option for certain individuals.   
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Resistance training interventions have previously been reported to alleviate anxiety 

and depression (2), both of which are common in college populations (20).  According to a 

2010 review (20) of mental health problems among college students, 15% of college students 

are diagnosed with depression, but fewer than a quarter of those diagnosed receive treatment.  

Anxiety disorders, including panic or generalized anxiety, are also prevalent in this 

population, with 10-12% of college students screening positive but less than 20% of those 

diagnosed receiving treatment (20).  Disturbed sleep is a common affliction of depressed 

individuals (51).  Furthermore, the presence of depressive symptoms concurrent with sleep 

disturbances is likely to lead to increased anxiety and impairments (33).  The anxiolytic and 

antidepressant effects of both anaerobic and aerobic exercise are well-documented (2).  Ten 

weeks of RE was previously found to improve depression as well as subjective sleep quality 

in older adults (39), suggesting that RE could provide a non-pharmacological means to 

reduce multiple associated complaints, especially for individuals who do not seek other 

forms of treatment.  In addition to improving subjective sleep quality, RE has been found to 

positively alter sleep architecture (49).  Compared to aerobic exercise, RE bouts take less 

time to complete, suggesting that this mode of exercise may be more compatible with the 

busy schedules of college students.  For example, Ferris and colleagues (11) found that a 

light workout consisting of only one set of five exercises improved subjective sleep quality 

over three months. 

Although different modes of exercise may result in similarly favorable alterations, 

timing of exercise is important.  While at least one study has shown that vigorous late-night 

aerobic exercise does not impair sleep in highly trained athletes (52), growing evidence 

suggests that aerobic exercise performed late in the evening may negatively impact 
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subsequent sleep in untrained individuals (9, 10, 37, 46, 53).  Previous research suggests that 

aerobically fit individuals, defined in the literature as those who engage in aerobic exercise 

for at least 20 minutes three times per week or have peak oxygen consumption (VO2peak) 

values of at least 40 and 50 mL·kg
-1

·min
-1

 for females and males, respectively (53), exhibit 

more optimal sleep patterns than their sedentary counterparts (9) and that differences in 

training regimes influence sleep architecture (45).  Fitness has been proposed to modulate the 

influence of exercise on sleep by shortening time required to recover from sympathetic 

nervous system arousal associated with exercise, although the evidence to support this theory 

is inconsistent (53).  Nevertheless, untrained subjects should be examined to elucidate the 

acute effects of a bout of RE on sleep architecture.  Presently, few investigations have 

studied the effects of RE on sleep in sedentary to recreationally active subjects, and very little 

information is available as to how timing of RE may influence sleep.  Although RE has been 

shown to enhance sleep similarly to aerobic exercise (11, 39, 49), RE is commonly 

performed in the afternoon as opposed to early in the morning.  Despite this, most studies 

examining the effects of RE on sleep have included interventions performed only in the 

morning (11, 49) or have not revealed the timing of the intervention (39), thus the literature 

regarding the effects of timing of RE on sleep in previously untrained individuals is limited.  

Because it is currently unknown how the timing of RE may affect objective quality of sleep, 

the purpose of this study was to examine the acute effects of timing of RE on sleep 

architecture in healthy college students.  Based on previous research from our lab regarding 

aerobic exercise, we hypothesized that subjects engaging in RE at 7 a.m. would experience 

the most optimal sleep architecture as signified by decreased sleep onset latency (SOL), more 

time spent in REM and deep sleep, and less wake time after sleep onset (WASO).  
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METHODS 

Participants.  Normotensive to pre-hypertensive nonsmokers between the ages of 18-

25 years were recruited from the student population at Appalachian State University.  

Subjects were sedentary to recreationally active, as defined by participation in no more than 

150 minutes of any mode of planned exercise per week.  To participate in the study, 

individuals had to meet additional inclusion criteria that included no orthopedic limitations to 

exercise, no history of CVD, and not taking any blood pressure or sleeping medications or 

aspirin therapy throughout the duration of the study.  All study procedures were approved by 

the Appalachian State University Institutional Review Board, and all subjects gave their 

written informed consent prior to any involvement in the study. 

Experimental protocol.  Twenty-four participants attended all five visits required to 

complete the study, which lasted approximately 2 wk.  The first visit was a non-RE control 

day (C) that consisted of anthropometric and blood pressure measurements and a treadmill 

maximal graded exercise test (GXT).  Subjects were instructed to arrive for this visit well-

hydrated and to eat as they normally would prior to exercise.  After completing the health 

history questionnaire, blood pressure was measured manually using a standard stethoscope 

and sphygmomanometer after the subject had been seated for five minutes.  Height and 

weight were then recorded without shoes or socks, and body fat percentage was determined 

using a foot-to-foot bioelectrical impedance analysis system (Model TBF-300A Body 

Composition Analyzer, Tanita Corporation of America, Inc., Arlington Heights, IL, USA).  

The GXT involved a modified Balke protocol to determine cardiorespiratory fitness.  Briefly, 

after a 5-minute warm-up at 1.5 mph and 0% incline, subjects walked at 3.3 mph for 1-

minute stages with grade increasing by 1% each stage.  If 25% incline was reached, speed 
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then increased by 0.2 mph each stage.  Subjects were encouraged throughout the test to 

continue the exercise until maximum exertion was reached, and the test ended when 

volitional exhaustion was attained.  Gas exchange was measured throughout the GXT using a 

metabolic measurement system (TrueOne® 2400, Parvo Medics, Sandy, UT, USA), and 

heart rate was recorded telemetrically using a Polar heart rate monitor (Polar Electro Inc., 

Lake Success, NY, USA).  Peak oxygen consumption and maximum heart rate (HRmax) were 

defined as the highest respective values obtained during the test using the 15-second 

averaging analysis setting. 

 During the second testing session, participants established a ten repetition maximum 

(10RM) on each of the nine RE machines to be used during the following visits.  Exercises 

were performed on standard double-leg press, leg extension, hamstring curl, calf raise, 

abdominal crunch, triceps extension, biceps curl, lat pulldown, and chest press exercise 

machines.  Determination of 10RM involved a warm-up set of ten repetitions at a self-

selected weight followed by progressively heavier sets of ten repetitions separated by 2 

minutes of rest.  A 10RM was accepted as the weight at which the subject could perform ten 

but not more than ten repetitions. 

 Visits 3, 4, and 5 were performed at 7 a.m. (7A), 1 p.m., (1P), and 7 p.m. (7P), in a 

randomized, counterbalanced order.  During each of these sessions, three sets of ten 

repetitions were performed at 65% of the individual’s 10RM on each respective exercise 

machine.  Each workout lasted approximately 30 minutes and was supervised by the 

researchers.  Repetitions were counted to maintain consistent timing of concentric and 

eccentric phases of each exercise across participants.  Thirty seconds to one minute of rest 
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were allotted between sets.  At least 60 hours separated each visit 2, 3, and 4 from the 

subsequent visit. 

 An ambulatory wireless sleep-monitoring headband (Zeo Sleep Manager™, Zeo, Inc., 

Newton, MA, USA) was worn during sleep following C, 7A, 1P, and 7P.  Use of this device, 

which was chosen due to its advantage of requiring minimal alterations to subjects’ sleeping 

environments, has previously been validated in a healthy population (38).  Participants were 

provided instructions for use at the conclusion of visit C, and sleep architecture data were 

collected the day following each session.  To limit confounding influences, participants were 

instructed to avoid consumption of alcohol or caffeine on days of C, 7A, 1P, and 7P and to 

maintain their normal sleep-wake rhythm throughout the study.  Caffeine and alcohol, which 

are both common drugs used by college students, have previously been shown to disturb 

sleep even when consumed several hours prior to habitual bedtime (8, 15).  Participants were 

also asked not to take naps and to avoid participating in any other organized exercise on days 

of the study visits. 

 Statistical analysis.  Sleep architecture data collected included SOL, number of times 

woken, total sleep time, time in REM, light, and deep sleep, and WASO.  A 1 (group) × 4 

(time) repeated measures analysis of variance (ANOVA) was conducted to detect significant 

differences between visits.  If significance was detected, an appropriate post hoc comparison 

was then performed to determine where the differences occurred.  Significance was set at P < 

0.05 for all statistical analyses, and all data are presented as means ± SE.  Analyses were 

completed using statistical software (IBM® SPSS® Statistics version 19, IBM Corporation, 

Armonk, NY, USA). 
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RESULTS 

 Physiological characteristics of subjects are presented in Table 1. 

 Analysis of sleep data revealed significant alterations in SOL, times woken, and 

WASO.  Subjects experienced shorter time to fall asleep after 7A as compared to 1P (36 ± 

5.2 min v. 57 ± 7.1 min, respectively) and 7P (71 ± 13.1 min; Figure 1A).  All RE visits 

resulted in significantly fewer times woken during the sleep bout as compared to C (7A:  3 ± 

0.5 times woken; 1P:  2 ± 0.5 times woken; 7P:  2 ± 0.5 times woken; C:  4 ± 0.8 times 

woken; Figure 1B), with 7P significantly decreasing WASO (5 ± 1.4 min v. 16 ± 4.1 min; 

Figure 1C).  No significant differences in total, light, REM, or deep sleep were observed 

between visits. 
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DISCUSSION 

 Since the timing of exercise may influence sleep architecture, it is important to 

investigate differential exercise modes.  This study was the first to examine the effects of 

performing a RE bout at various times of day on sleep architecture in a normotensive to pre-

hypertensive population of college students.  The main finding, that timing of RE did not 

significantly affect total, light, REM, or deep sleep, was contrary to our hypothesis; however, 

our results suggest that performing RE at any time of day enhances the ability to stay asleep 

as compared to not performing this mode of exercise.  We also found evidence that lifting 

weights at 7 a.m. may be superior to other times of day in regard to diminishing SOL but that 

7 p.m. may result in a subsequent bout of sleep with the least amount of time spent awake 

after initially falling asleep. 

 The finding that exercise timing did not affect sleep stages is interesting in 

comparison to previous literature that has investigated aerobic exercise timing in relation to 

sleep.  Fairbrother and colleagues (10) recently demonstrated that aerobic exercise performed 

at 7 a.m. resulted in the highest sleep quality as determined by more deep sleep and less 

REM sleep.  In a meta-analysis, researchers (53) reported moderate effects of acute aerobic 

exercise on deep, REM, and total sleep with exercise increasing, decreasing, and increasing 

these respective variables.  However, the discrepancies between our results and the meta-

analysis could arise from differences in exercise mode, as the only other study to assess 

objectively sleep quality following RE in healthy, untrained individuals saw a significant 

change in light sleep alone, with less light sleep occurring following the exercise intervention 

(49).  Although we did not observe significant alterations in light sleep in the present study, 

our results are concurrent with the findings of the previous investigation in that RE did not 
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affect total, deep, or REM sleep as compared to a non-exercise control day.  Some evidence 

suggests that total sleep duration is most related to exercise duration and that exercise bouts 

less than an hour produce negligible effects on total sleep duration (51, 53).  Although 

aerobic exercise has been studied more extensively than RE in this regard, this finding could 

explain the absence of any changes in total sleep in the present study.  It also calls into 

question the applicability of attempting to use RE to improve total sleep time in the general 

population. 

When compared to the control visit, all exercise days resulted in significantly fewer 

times woken during the night.  Similarly, Viana and colleagues (49) reported a lower arousal 

index in subjects who performed RE.  Two studies that investigated the effects of resistance 

training on subjective sleep quality also found that sleep was improved following the 

exercise intervention (11, 39); however, it should be noted that each of these studies (11, 39, 

49) included older adults and that older adults have been shown to exhibit longer SOL 

periods and more awakenings as compared to young adults (50).  The inclusion of a 

depressed population (39) also limits the comparison of the current study with earlier 

research.  Though many individuals regularly perform aerobic exercise, those who do not 

regularly engage in aerobic exercise because of health or other limitations could improve 

their ability to maintain sleep and concomitantly limit the risk of adverse health conditions 

such as CVD, diabetes, and depression, which have all been associated with poor or 

insufficient sleep, by incorporating RE into their weekly routines, thus supporting the role of 

exercise as an effective prophylactic health measure. 

Morning exercise (7A) significantly improved time to fall asleep.  This finding is in 

agreement with an earlier study in which subjects who exercised in the morning reported less 
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trouble falling asleep compared to evening exercisers (46).  Aerobic exercise in the morning 

as compared to 1 p.m. and 7 p.m. was also found to diminish SOL when measured 

objectively (10).  Although we attempted to minimize any alterations in the subjects’ normal 

sleep-wake habits, the study design necessitated that subjects awakened prior to 7 a.m. for 

the 7A visit.  As we studied college students, it is possible that this wake time was earlier 

than some of the subjects’ habitual wake times, which could have contributed to the 

decreased SOL reported following 7A.  One of the most popular theories offered to explain 

regulation of sleep includes the collaboration of a homeostatic drive for sleep and the 

circadian modulation of sleep (30).  This model proposes that the homeostatic drive to sleep, 

or sleep pressure, increases directly with time spent in wakefulness and decreases during 

sleep and that this sleep pressure combined with the circadian sleep drive promotes 

maintenance of sleep during the biological night and wakefulness during the day.  Based on 

this theory, it is possible that results would differ in participants who regularly awakened 

before 7 a.m.  It is also important to note that, although C was not significantly different from 

any of the RE visits, SOL following each RE visit was less than SOL following C. 

Evening exercise (7P) significantly reduced WASO.  A previous review of the current 

literature (51) has also reported variations in SOL and WASO dependent on exercise timing, 

with the most beneficial effects occurring after subjects engaged in exercise 4 to 8 h prior to 

bedtime.  However, these researchers also found that activities performed within 4 h of 

bedtime generally decreased WASO and slightly increased SOL.  Our results for WASO are 

consistent with this review.  Although not significant, we also saw increased SOL in the 

latest exercise time as compared to 7A and 1P.  In addition, similar to our results for SOL, 



14 

 

we observed non-significant beneficial effects of RE on WASO, as each RE visit resulted in 

less WASO than C. 

 A major strength of the present study was our ability to evaluate sleep architecture 

within the subjects’ usual home sleeping environments as opposed to in a laboratory setting.  

The use of a healthy, untrained population with no previously diagnosed sleep disorders also 

eliminated possible confounding factors, although the use of good sleepers may have limited 

the effects of exercise on sleep architecture.  Chronic exercise training is thought to influence 

sleep architecture (9), so one could speculate that the multiple exercise sessions may have led 

to a training effect evident on the latter visit(s); however, we do not consider this to be a 

limitation of the current study due to the randomized order that visits were performed and the 

previous finding that the influence of training on sleep is not evident before eight weeks of 

training (37).  Although we imposed controls by requiring subjects to abstain from caffeine 

and alcohol consumption, a limitation of the study design was that we did not assess 

compliance with these instructions.  In addition, the order of visits, with C always occurring 

first, may have influenced our results.  Specifically, this order effect may have been 

responsible for the large standard errors produced by the sleep architecture variables during 

the control visit (Figure 1); although preliminary testing by the research personnel revealed 

that the sleep-monitoring headband was comfortable and did not interfere with normal sleep, 

it is possible that some subjects experienced difficulty sleeping due to lack of previous 

familiarization with this device.  This variation could have masked differences that would 

have otherwise been significant. 

Mechanisms to explain the influence of exercise and exercise timing on sleep have 

included tissue restoration, energy conservation, temperature downregulation, and alterations 
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in secretion of endogenous compounds such as hormones or cytokines.  Trinder and 

colleagues (45) provided evidence against the ideas that amounts of total and deep sleep are 

proportional to tissue restoration requirements and that sleep duration reflects daily energy 

expenditure, although the temperature downregulation hypothesis, which suggests that 

elevating body temperature through exercise prior to the onset of sleep facilitates sleep 

through the loss of heat and the associated mechanisms that affect sleep architecture, 

particularly deep sleep (9), remains a viable explanation (51).  Fairbrother and colleagues 

(10) recently demonstrated that early morning aerobic exercise resulted in the highest sleep 

quality, possibly as a result of regulating the secretion of leptin or other hormones.  

Additional researchers have postulated that adding exercise improves sleep via increasing 

exposure to bright light, producing shifts in circadian rhythm as well as enhancing sleep 

through an antidepressant mechanism (9); however, this theory may be more relevant to 

aerobic exercise, which is more commonly completed outdoors, where lux values typically 

exceed 2500 (53), than to RE.  It has also been suggested that cytokines and growth factors 

mediate sleep (9, 37).  Specifically, interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor 

necrosis factor alpha (TNF-α) have been implicated in sleep regulation because of their 

modulatory effects on body temperature and calcium release and observations that slightly 

elevated concentrations of these pro-inflammatory cytokines, as occurring acutely after low 

to moderate intensity exercise, promote drowsiness, while much higher levels of IL-6, such 

as the 100-fold increase seen after marathon completion, have the opposite effect and are 

associated with wakefulness (37).  A recent comparison (25) of moderate versus high 

intensity cycling matched for external workload found significantly elevated plasma IL-6 

following the high intensity bout both immediately (~10 v. ~ 7 pg/mL) and 1.5 h (~8 v. ~ 7 
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pg/mL) after the exercise.  An investigation (34) of IL-6 levels in response to a moderate 

intensity RE protocol similar to that utilized in the present study showed an immediate 

average elevation to only 5.1 pg/mL in healthy sedentary subjects.  Due to the similarities 

between protocols and given that IL-6 responses depend largely on exercise intensity and 

duration, the muscle mass recruited, and the fitness level of the individual (32), it is plausible 

to suggest that subjects in the present study may have demonstrated comparable IL-6 

elevations.  Furthermore, it is possible that a reduction in conditions that negatively affect 

sleep, such as obesity, depression, or anxiety, is somewhat responsible for the positive 

influence of exercise on sleep (37).  Depression and anxiety are common mental health 

problems among college and college-aged populations (20), although we cannot make any 

assumptions to this regard about the students who volunteered for our study as we did not 

assess these conditions within the current study.  At least one prior investigation of the 

effects of resistance training on quality of sleep speculated an increase in growth hormone or 

growth hormone-releasing hormone secretion could be a potential cause for the 

improvements they found, although these researchers did not measure levels of either 

hormone in the respective study (11).  Growth hormone-releasing hormone has been 

identified as meeting all the criteria required to be classified as a regulating substance for 

NREM sleep (54), but the influence of growth hormone administration on sleep in humans is 

still inconclusive (17).  Specific hormonal responses to exercise depend on factors such as 

intensity, total work, and rest periods, so without any relevant measures in the present study 

it is not possible to determine the magnitude of the hormonal response.  However, prior 

research suggests that it is unlikely that the lower intensity of the protocol used would have 

dramatically increased growth hormone or modified the acute leptin response (24).  It is 
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likely that some combination of the aforementioned conditions may explain the sleep 

improvements following RE reported in the literature and the alterations observed in this 

study, although the variables measured herein require that any discussion of causation 

remains speculative. 

The present study has provided additional support for the potential of exercise, 

specifically RE, to improve sleep.  A ceiling effect has been proposed in which individuals 

who are good sleepers experience minimal sleep architecture alterations in response to an 

intervention (9, 51); therefore, we selected to investigate the influence of RE on a population 

at-risk for depression and anxiety disorders but with no previously diagnosed sleep disorders 

in order to isolate the effects of RE while simultaneously acknowledging that the same 

intervention could produce a magnified response in individuals who suffer from some 

combination of sleep, depression, and anxiety disorders but are otherwise similar to the 

sample under study.  These findings within a college-aged population warrant future 

investigations into the use of resistance training as a non-pharmacological means of 

enhancing sleep quality in groups that may suffer from both disturbed sleep and other 

conditions which may be alleviated by participation in a progressive RE intervention, such as 

osteoporosis, sarcopenia, depression, or anxiety.  Further improvements or alterations in 

sleep architecture may become apparent only when participants are not good sleepers (9, 51), 

thus there is reason to believe that timing of RE could have a significant impact on sleep 

stages in a different population, possibly elucidating the optimal time of day to perform RE 

to facilitate restorative sleep. 
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TABLES 

Table 1.  Subject Characteristics 

Variable Mean SE 

Age (yr) 20 0.3 

Height (cm) 171 2.1 

Weight (kg) 72.7 3.2 

BIA (%) 22.4 1.9 

SBP (mm Hg) 118 1.7 

DBP (mm Hg) 72 1.9 

VO2peak (mL·kg
-1

·min
-1

) 38.44 1.4 

HRmax (bpm) 187 2.5 

Data are from 24 healthy college students (n = 12 males).  SE defines ± SE.  BIA, 

bioelectrical impedance analysis; SBP, systolic blood pressure; DBP, diastolic blood 

pressure; VO2peak, peak oxygen consumption; HRmax, maximum heart rate obtained during 

graded exercise test. 
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FIGURE CAPTIONS  

Figure 1.  Sleep onset latency (SOL; A), number of times woken (B), and wake after sleep 

onset (WASO; C) following control visit (C) and resistance exercise at 7 a.m. (7A), 1 p.m. 

(1P), and 7 p.m. (7P).  *P = 0.03, significant difference from 7A.  †P = 0.02, significant 

difference from 7A.  ‡P = 0.04, significant difference from C.  §P = 0.01, significant 

difference from C. 
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Figure 1. 
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